Solve the simultaneous equations: 3x+4y=19, x-6y= -23.

In order to solve these simultaneous equations we first want to eliminate one of the variables (x or y) and find a solution to the variable remaining (y or x) and then use this solution to find the second variable. To simplify this problem we want to make one of the variables in both equations equal, i.e. in this problem we can multiply the second equation by 3 to get 3x-18y= -69, rearranging this to get 3x on its own we get 3x= 18y-69. Rearranging the first equation to get 3x on its own yields 3x=19-4y. We can now equate these two equations as both are equal to 3x, hence 18y-69=19-4y, rearranging to solve for y gives 22y=88 and hence y=4. Substituting y=4 into one of the original equations to solve for x, (using the second equation) x= 6y-23=6*4-23=24-23=1. Hence the solutions are x=1 and y=4.

Answered by Nathalie L. Maths tutor

3079 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise fully y=x^2+x-12 and hence find the roots of the curve


Factorise this equation and then solve for x) 2x^2 - 3x-2


Work out 3 3/4 x 2 6/7 giving your answer as a mixed number in its simplest form.


There are green and red counters in a bag. There are 30 counters in total. The ratio of red to green counters is 1 : 5. There are 5 red counters in the bag. How many green counters are in the bag?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences