What's the difference between inertial and gravitational mass?

Like charges repel and different charges attract, i.e. charges feel an electromagnetic (EM) force. Electrons (fundamental particles that 'orbit' around the nuclei of atoms) carry a negative charge of -1.610^-19 Coulombs (the unit of charge). This number, or why it's negative doesn't really matter. What does matter is that if you try to bring two electrons together, they will both feel a repulsive force. But if you, somehow, switched the charge of one electron (so that is becomes positive), the two electrons will now attract.
So how does this relate to gravity? Well, electrons have a mass, and they also have electric charge. But their mass (9.10938356 × 10^-31 kg) is not the same as their charge (-1.6
10^-19 C), and there really isn't any reason at all why these two numbers should be equal. Now think about gravity, this is also a force like the electromagnetic force. Just like charge was responsible for creating the EM force, gravitational charge is responsible for gravitational force - we call this is gravitational mass (but really think of it as charge). And again there is no reason why this gravitational mass should be equal to the objects inertial mass (rest mass is just a measure of how much stuff is in something). But it is. This is known as Einstein's Weak Equivalence principle, and without it, General Relativity would come tumbling down like a house of cards.

YB
Answered by Yassine B. Physics tutor

2177 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A car of mass m travelling with a velocity v comes to rest over a distance d in time t. The constant frictional force acting on the car while it is braking is found using:


On a speed/time graph: a) how would a constant deceleration be illustrated? b) how would you use the graph to calculate total distance travelled?


A ball is kicked off a cliff at a height of 20m above ground and an angle of 30 degree from the horizontal, it follows projectile motion and lands after a time t. Its velocity at the maximum height it reaches is 20m/s, how long does it take it to land?


Explain the Doppler Shift Effect, and how it can be used to measure blood flow in the body.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning