How do you find the equation of a line at a given point that is tangent to a circle?

This question may start by giving you an equation, which you need to write in the form of the standard equation of a circle (usually by completing the square). This allows you to see the centre of the circle. As you now have two coordinates you can work out the gradient of the line between the centre of the circle and the given point on the circumference. As this line is perpendicular to the tangent on the circle, the gradient is the negative reciprocal. Now you know the gradient of the tangent and a point it crosses through, you can find the equation of the line by substituting these values into the standard equation of a line y=mx+c

TW
Answered by Tom W. Maths tutor

4872 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle P is projected vertically upwards from a point 20m above the ground with velocity 18m/s, no external forces act on it other than gravity. What will its speed be right before it hits the ground? Give your answer to one decimal place.


Given that y=(4x-3)^3 x sin2x find dy/dx


Determine the integral: ∫x^(3/4)dx


Find the coordinate of the stationary point on the curve y = 2x^2 + 4x - 5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning