Work out the angle between the two tangents of the curve y = sin(x) at y = 0 and y = 1

First we take the derivative of the function, this gives us dy/dx = cos(x)
Now we work out the different x values for y = 0 and y = 1.
sin(x) = 0 => x = 0, sin(x) = 1 => x = pi/2 (90 degrees)
We then substitute these values into dy/dx which gives us two gradients of 1 and 0 respectively
We can then work out the angle between these two values as the difference between the tangents of the two gradients
(angle = tan(m), this gives us the answer of 45 degrees (angle = tan(1) - tan(0))

KJ
Answered by Kieran J. Maths tutor

1355 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

dy/dx = 6x^2 - 3x + 4 when y=14 x=2 Find y in terms of x


Calculate the rate of change of d(t )=2/(3t), t ≠ 0, when t=6.


Show that the two vectors A= 2i+3j-k and B=3i-j+3k are perpendicular


Calculate the rate of change of y(t) = 1/(4t), when t = 8


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning