Find the stationary points of the function z = 3x(x+y)3 - x3 + 24x

z = 3x(x+y)3 - x3 + 24xDifferentiating partially with respect to x and with respect to y:∂z/∂x = 3(x+y)3 + 9x(x+y)2 - 3x2 + 24∂z/∂y = 9x(x+y)2At stationary points: ∂z/∂x = 0 and ∂z/∂y = 0.From ∂z/∂y = 0 we deduce: x = 0 or y = -x.We consider ∂z/∂x = 0 in each of these cases:For x = 0:3y3 + 24 = 0y = -2Hence a stationary point at (0, -2, 0)For y = -x:-3x2 + 24 = 0x = 2√2 and x = -2√2Hence stationary points at (2√2, -2√2, 32√2) and (-2√2, 2√2, -32√2)

HT
Answered by Harvey T. Further Mathematics tutor

1939 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Express the complex number (1+i)/(1-i) in the form x+iy


How would you show the equation f(x) = 2x – 10 sin x – 2 has a root between 2 and 3 (where x is measured in radians)


using an integrating factor, find the general solution of the differential equation dy/dx +y(tanx)=tan^3(x)sec(x)


Find the values of x where x+3>2/(x-4), what about x+3>2/mod(x-4)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences