Find the stationary points of the function z = 3x(x+y)3 - x3 + 24x

z = 3x(x+y)3 - x3 + 24xDifferentiating partially with respect to x and with respect to y:∂z/∂x = 3(x+y)3 + 9x(x+y)2 - 3x2 + 24∂z/∂y = 9x(x+y)2At stationary points: ∂z/∂x = 0 and ∂z/∂y = 0.From ∂z/∂y = 0 we deduce: x = 0 or y = -x.We consider ∂z/∂x = 0 in each of these cases:For x = 0:3y3 + 24 = 0y = -2Hence a stationary point at (0, -2, 0)For y = -x:-3x2 + 24 = 0x = 2√2 and x = -2√2Hence stationary points at (2√2, -2√2, 32√2) and (-2√2, 2√2, -32√2)

Related Further Mathematics A Level answers

All answers ▸

Find the eigenvalues and eigenvectors of A = ([2, 0 , 0], [0, 1, 1], [0, 3, 3])


Find the general solution to: d^(2)x/dt^(2) + 7 dx/dt + 12x = 2e^(-t)


Prove e^(ix) = cos (x) + isin(x)


Show that the sum from 1 to n of 1/(2n+1)(2n-1) is equal to n/(2n+1) by Induction


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences