Solve the simultaneous equations 2x + 7y = 15 and 3x + 6y = 21

Find the lowest common multiple of 2 and 3, which is 6. Multiply each term in the first equation by 3, and each term in the second equation by 2 to produce two equations with the same coefficient of x (which is 6). The two resulting equations are 6x + 21y = 45 and 6x + 12y = 42. Now you need to cancel the x term by subtracting the second equation from the first which leaves you with 9y = 3, y =1/3. Now sub y=1/3 into any of the four equations to find an x value of 19/3.
Copy of method worked through ready to show in session

IR
Answered by Isobel R. Maths tutor

3503 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Two simultaneous questions are given as 3x+2y = 9, and x-2y = -5. Find the values for x and y


Show that (x + 1)(x + 2)(x + 3) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.


ForA=2x^2 –18x+80 (i) find dA/dx , (ii) find the value of x for which A is a minimum


Work out 3 and 1/2 divided by 2 and 4/5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning