Solve the simultaneous equations 2x + 7y = 15 and 3x + 6y = 21

Find the lowest common multiple of 2 and 3, which is 6. Multiply each term in the first equation by 3, and each term in the second equation by 2 to produce two equations with the same coefficient of x (which is 6). The two resulting equations are 6x + 21y = 45 and 6x + 12y = 42. Now you need to cancel the x term by subtracting the second equation from the first which leaves you with 9y = 3, y =1/3. Now sub y=1/3 into any of the four equations to find an x value of 19/3.
Copy of method worked through ready to show in session

IR
Answered by Isobel R. Maths tutor

3011 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A football pitch has a length of the xm. Its width is 25m shorter than the length. The area of the pitch is 2200m2. Show that x2 - 25x - 2200 =0 and work out the length of the football pitch.


Write x^2 + 8x + 7 in the form (x + a)^2 + b


Prove that n(n+5) + 2(n+3) is always a product of two numbers with a difference of 5.


f(x)=cos(x), g(x)=2+cos(x-1), state g(x) as a vector applied to f(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences