1. (a) Find the sum of all the integers between 1 and 1000 which are divisible by 7. (b) Hence, or otherwise, evaluate the sum of (7r+2) from r=1 to r=142

1a) 1000/7=142.8.... Therefore there are 142 multiples of 7 between 1 and 1000
Therefore the sum of series from 1 to 142 is 1/7th of the solution
Calculation:70.5142143=71071

1b) The sum of (7r+2) from r=1 to r=147 is equal to the sum of 7
(the sum of (r) from r=1 to r=147) plus (the sum of (2) from r=1 to r=147)
Calculation:7(0.5142143) + 142*2 =71355

Answered by Jack F. Maths tutor

5256 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a derivative?


y(x) = x^2(1-x)e^-2x , find y'(x) in the form of g(x)e^-2x where g(x) is a cubic function to be found


Simplify the following C4 question into it's simplest form: (x^4-4x^3+9x^2-17x+12)/(x^3-4x^2+4x)


How do you find the gradient of a line at a certain point when f(x) is in the form of a fraction, where both the numerator and denominator are functions of x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences