1. (a) Find the sum of all the integers between 1 and 1000 which are divisible by 7. (b) Hence, or otherwise, evaluate the sum of (7r+2) from r=1 to r=142

1a) 1000/7=142.8.... Therefore there are 142 multiples of 7 between 1 and 1000
Therefore the sum of series from 1 to 142 is 1/7th of the solution
Calculation:70.5142143=71071

1b) The sum of (7r+2) from r=1 to r=147 is equal to the sum of 7
(the sum of (r) from r=1 to r=147) plus (the sum of (2) from r=1 to r=147)
Calculation:7(0.5142143) + 142*2 =71355

Answered by Jack F. Maths tutor

5123 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y =(4x)/(x^2+5) (a) Find dy/dx, writing your answer as a single fraction in its simplest form. (b) Hence find the set of values of x for which dy/dx<0


Take the polynomial p(x)=x^4+x^3+2x^2+4x-8, use the factor theorem to write p(x) as two linear factors and an irreducible quadratic. An irreducible quadratic is a quadratic that can not be factorised.


Given that y=(4x-3)^3 x sin2x find dy/dx


Solve the equation 5^x = 8, giving your answer to 3 significant figures.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences