Find the gradient at the point (0, ln 2) on the curve with equation e^2y = 5 − e^−x

Question is asking for gradient at x = 0, y = ln2. e^2y = 5 - e^-x. Differentiation with respect to x: 2e^2y * dy/dx = e^-x . dy/dx = e^-x / 2e^2y. At x = 0, y = ln2 ~ dy/dx = e^0 / 2e^2ln2 = 1 / 2e^ln4 = 1 / 2 * 4 = 1/8. Gradient = 1/8

Answered by Lokmane K. Maths tutor

4644 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the chain rule to show that, if y = sec(x), then dy/dx = sec(x)tan(x).


A cubic curve has equation y x3 3x2 1. (i) Use calculus to find the coordinates of the turning points on this curve. Determine the nature of these turning points.


Given that y = x^4 + x^(1/3) + 3, find dy/dx


How do I check if events are independent (in statistics / probability)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences