How do you factorise a quadratic equation into the form (x+A)(x+B), for example x²+x-6 =0?

Quadratic equations are always given in the form ax2 +bx +c. One way of solving (finding values of x) and therefore factorising is to use the quadratic formula which is :x = −b ± √(b2 − 4ac)/ 2a ,using the values of a, b and c from the quadratic equation given. In the example given a=1 b=1 and c=-6 so when put in the formula: x = −1 + √(12 − 4(1x-6)) /2(1) = 2 or x = −1 -√(12 − 4(1x-6()/ 2(1) = -3 So here we have solved the equation but not factorised it. We know that x = 2 and x=-3. We also know that the equation = 0. Therefore when the equation is factorised into brackets the values within the brackets must =0. So if x=2, for the bracket to = 0 the value of A must be -2, and if x=-3 the value of B must be +3. Therefore x²+x-6 = (x-2)(x+3)

Answered by India J. Maths tutor

2144 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

An ordinary, fair sided dice is rolled 480 times. How many times is the number 3 expected?


X^2+4x-21=0 Solve for x


Calculate the length of the side of the Triangle marked by x.


What are "x" and "y" and why are they used?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences