Expand the brackets (x+1)(x-4)

When we are presented with a quadratic equation in this form, and asked to expand, it is important to make sure that every term is used. For example, we would begin with the 'x' from the (x+1) bracket, and then multiply this by the 'x' in the (x-4) bracket, and the '-4' in the (x-4) bracket. That will give us x^2 -4x. Next, we take the '+1' from the (x+1) bracket and multiply this by both terms in the (x-4) bracket, giving us x-4. Now, all we need to do is collect like terms, and present our expanded quadratic equation in the simplest way. So overall we have x^2 -4x +x -4. This simplifies to x^2 -3x -4, which is the expansion which we require.

Answered by Abbie W. Maths tutor

4577 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to solve the simultaneous equations: 3x+5y=19 and 4x+6y=22


Find the lowest common multiple and highest common factor of 30 and 60.


A gardener uses this formula to work out how much he charges to make a lawn. C = 7(14 +A)/ 3. C is the charge in £. A is the area in m2. He makes a rectangular lawn measuring 12.5 m by 17.6 m. How much does he charge?


Line segment AB is drawn between point A(-3, 3) and point B(-1, -1). Work out the gradient of the line segment AB, then find the equation of the graph.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences