Find the eigenvalues and eigenvectors of the following 3x3 matrix (reading left to right, top to bottom): (1 0 2 3 1 1 2 0 1)

The eigenvalues are given by the characteristic equation (1-x)((1-x)^2-4)=0, which gives the values x=1, x=-1 and x=3 . These eigenvalues correspond to the eigenvectors (0, 1, 0), (1, -1, -1) and (1, -5, 1) respectively.

JP
Answered by Joshua P. Further Mathematics tutor

2088 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Solve the second order differential equation d^2y/dx^2 - 4dy/dx + 5y = 15cos(x), given that when x = 0, y = 1 and when x = 0, dy/dx = 0


Using graphs, show how the Taylor expansion can be used to approximate a trigonometric function.


Find the complementary function to the second order differential equation d^2y/dx^2 - 5dy/dx + 6x = x^2


Integral of ln x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning