Find the eigenvalues and eigenvectors of the following 3x3 matrix (reading left to right, top to bottom): (1 0 2 3 1 1 2 0 1)

The eigenvalues are given by the characteristic equation (1-x)((1-x)^2-4)=0, which gives the values x=1, x=-1 and x=3 . These eigenvalues correspond to the eigenvectors (0, 1, 0), (1, -1, -1) and (1, -5, 1) respectively.

Related Further Mathematics A Level answers

All answers ▸

Solve x^3=1 giving all the roots between -pi<=theta<=pi in exponential form


What are the conditions required for the poisson distribution?


How do I know which substitution to use if I am integrating by substitution?


Why is the integral of 1/sqrt(1-x^2)dx = sin^{-1}(x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences