Find the eigenvalues and eigenvectors of the following 3x3 matrix (reading left to right, top to bottom): (1 0 2 3 1 1 2 0 1)

The eigenvalues are given by the characteristic equation (1-x)((1-x)^2-4)=0, which gives the values x=1, x=-1 and x=3 . These eigenvalues correspond to the eigenvectors (0, 1, 0), (1, -1, -1) and (1, -5, 1) respectively.

Related Further Mathematics A Level answers

All answers ▸

Show that the square of any odd integer is of the form (8k+1)


The finite region bounded by the x-axis, the curve with equation y = 2e^2x , the y-axis and the line x = 1 is rotated through one complete revolution about the x-axis to form a uniform solid. Show that the volume of the solid is 2π(e^2 – 1)


A=[5k,3k-1;-3,k+1] where k is a real constant. Given that A is singular, find all the possible values of k.


write the sum cos(x)+cos(2x)+...+cos(nx) as a quotient only involving sine and cosine functions


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences