A car of mass M and a maximum power output of P is on an rough inclined plane Θ to the horizontal. What is the maximum velocity (v). Coefficient of friction=μ and air resistance=kv where k is constant

At the maximum velocity the driving force of the car is equal to the sum of the opposing forces: Fdriving=Ffriction+Fair+mgsinΘ Ffriction=mgμcosΘ Fair=kv p=[mgμcosΘ+ kv+mgsinΘ]v = [μcosΘ+sinΘ]mgv+kv2 kv2+[μcosΘ+sinΘ]mgv-p=0 solve using the quadratic equation: v= -[μcosΘ+sinΘ]mg ± [ ([μcosΘ+sinΘ]mg)2+4kp]1/2 . 2k We only want the positive root as, the direction of velocity is up the incline therefore: v= -[μcosΘ+sinΘ]mg + [ ([μcosΘ+sinΘ]mg)2+4kp]1/2 . 2k

Answered by Joel B. Physics tutor

1529 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How do I find how much radioactive material is left after time t if I know its half-life?


Show Maxwell's equations in free space satisfy the wave equation


Why do gravitational fields around point masses obey an inverse square law?


What is meant by a uniform electric field?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences