Find the solutions of the equation: sin(x - 15degrees) = 0.5 between 0<= x <= 180

Consider a sin graph and all the points on the graph which are equal to 0.5. You'll find that, between one period of a positive sin graph, invsin(0.5) may equal 30 degrees or 150 degrees.
The equation can now be seen as:x - 15 = 30, and x - 15 = 150.
These equations can be solved for x, leading to: x = 45, x=165

MT
Answered by Mahir T. Maths tutor

4365 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to: y = X^2 + 3x + 2 at the point (2,12)


Show that the integral of tan(x) is ln|sec(x)| + C where C is a constant.


How do you find the maximum/minimum value of an equation?


Solve for 0<=θ<π, the equation sin3θ-(sqrt3)cosθ=0 (C2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning