Find the solutions of the equation: sin(x - 15degrees) = 0.5 between 0<= x <= 180

Consider a sin graph and all the points on the graph which are equal to 0.5. You'll find that, between one period of a positive sin graph, invsin(0.5) may equal 30 degrees or 150 degrees.
The equation can now be seen as:x - 15 = 30, and x - 15 = 150.
These equations can be solved for x, leading to: x = 45, x=165

MT
Answered by Mahir T. Maths tutor

4096 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation x^2 – 3xy – 4y^2 + 64 = 0; find dy/dx in terms of x and y, and thus find the coordinates of the points on C where dy/dx = 0


How do i find dy/dx in terms of t for two parametric equations that are in terms of t.


Given that x = 1/2 is a root of the equation 2x^3 – 9x^2 + kx – 13 = 0, find the value of k and the other roots of the equation.


What is a parametric equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning