Find the solutions of the equation: sin(x - 15degrees) = 0.5 between 0<= x <= 180

Consider a sin graph and all the points on the graph which are equal to 0.5. You'll find that, between one period of a positive sin graph, invsin(0.5) may equal 30 degrees or 150 degrees.
The equation can now be seen as:x - 15 = 30, and x - 15 = 150.
These equations can be solved for x, leading to: x = 45, x=165

Answered by Mahir T. Maths tutor

3301 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I add up the integers from 1 to 1000 without going insane?


Use integration to find I = ∫ xsin3x dx


The complex conjugate of 2-3i is also a root of z^3+pz^2+qz-13p=0. Find a quadratic factor of z^3+pz^2+qz-13p=0 with real coefficients and thus find the real root of the equation.


y = 1/x^2, differentiate y (taken from AQA 2018 past paper)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences