Show how you can rewrite (x+1)(x-2)(x+3) into the form of ax^3 + bx^2 + cx + d

Split the first equation into three parts, i.e. (x+1), (x-2) and (x+3). Multiply the first two parts to get x2- x - 2, then multiply the result with the third part to get x3 + 2x2 - 5x - 6. All that is left now is to solve the equation x3 + 2x2 - 5x - 6 = ax3 + bx2 + cx + dand you can see that a = 1b = 2c = -5d = -6

Answered by Gustas M. Maths tutor

3153 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the integral of e^x*sin x


Write 5cos(theta) – 2sin(theta) in the form Rcos(theta + alpha), where R and alpha are constants, R > 0 and 0 <=alpha < 2 π Give the exact value of R and give the value of alpha in radians to 3 decimal places.


How would I differentiate y = 3xy + 2x^2 + x^2y^2 ?


The first term of an infinite geometric series is 48. The ratio of the series is 0.6. (a) Find the third term of the series. (b) Find the sum to infinity. (c) The nth term of the series is u_n. Find the value of the sum from n=4 to infinity of u_n.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences