Show how you can rewrite (x+1)(x-2)(x+3) into the form of ax^3 + bx^2 + cx + d

Split the first equation into three parts, i.e. (x+1), (x-2) and (x+3). Multiply the first two parts to get x2- x - 2, then multiply the result with the third part to get x3 + 2x2 - 5x - 6. All that is left now is to solve the equation x3 + 2x2 - 5x - 6 = ax3 + bx2 + cx + dand you can see that a = 1b = 2c = -5d = -6

Answered by Gustas M. Maths tutor

3298 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express X/((X+1)(X+2)) in partial fractions. OCR C4 style question


sin(x)/(cos(x)+1) + cos(x)/(sin(x)+1) = 1


Differentiate f = ln(x^2 + 1) / (x ^ 2 + 1).


Integrate the expression cos^2(x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences