A ball is released from height h w.r.t. the ground. Draw a qualitative height versus time diagram of the ball bouncing in a non-ideal case.

In a non-ideal case, there will be energy loss in heat when the ball touches the ground. In particular:Kn=aKn-1, where Kn-1 is the kinetic energy before the nth bounce, Kn is the kinetic energy after the bounce, and a is the fraction of kinetic energy that remains after the bounce. We can see that this produces a geometric series of the form: Kn=anK0, which gives the kinetic energy after n bounces. To transform this into height, we just need to remember that the maximum height after n bounces hn is reached when Kn is all converted into potential energy (mgh), where m is the mass of the ball. Substitute the formula of KE. Hence: hn=Kn/(mg)=anK0/(mg). Now, as K0 is proportional to the height to which the ball was originally released h0(again, for the conservation of energy), We get: hn \propto anh0. Hence the maximum height decrease exponentially (as a <1). The maximum vertices are also peaks of rotated parabolas, as the ball obeys the free-fall equation which says that h is proportional to t2. Draw this and you get the diagram requested.

EP
Answered by Emanuele P. Physics tutor

2685 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball is launched from ground level at 5m/s at an angle of 30 degrees above the horizontal. What is its height above ground level at the highest point in its trajectory?


What is dimensional analysis and how is it used?


Asteroid of mass 10^16 kg is travelling in the equatorial plane of Earth. It hits the surface at 45°. After the impact the day shortens by 1% (15 mins). How fast was the asteroid - comment? Neglect effects of atmosphere. Consider only inelastic collision.


describe how a microwave oven works (EM waves + thermal physics)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning