Find values of x in the interval 0<x<360 degrees. For which 5sin^2(x) + 5 sin(x) +4 cos^2(x)=0

This question is split up into two parts.
Firstly recall the trigonometric identities you know, the trick here is to eliminate one of the squared terms. Using 4sin^2(x) +4cos^2(x) = 4, the cos term is eliminated.
Rearranging this equation leaves you with a strange quadratic equation, but if you pretend sin is x it actually looks quite simple and can be solved like a simple quadratic. Solve like this and replace x for sin and the solution follows

JG
Answered by James G. Maths tutor

8960 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

given that at a time t, a particle is accelerating in the positive x-direction at 1/t ms^-2, calculate the velocity and the displacement of the particle at time t = 2s


Prove the identity: (cos θ + sin θ)/(cosθ-sinθ) ≡ sec 2θ + tan 2θ


The graph above shows the line y = 3*x^2. Find the area beneath the graph from y = 0 to y = 5.


(FP3 question). Integrate 1/sqrt(3-4x-x^2).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning