The equation kx^2 + 4x + (5 – k) = 0, where k is a constant, has 2 different real solutions for x. Show that k satisfies k^2-5k+4>0.

This questions is a proof type question, which means that you need to get to a specific formula. Usually, these questions give you clues in order to prove it. In this case it tells you that the equation has 2 different roots. The fact that the equation given is a quadratic and that that it has 2 different roots it means that the discriminant of the equation is bigger than 0. The discriminant of a quadratic equation of the form ax^2 +bx + c = 0 is b^2-4ab. In this case a = k, b = 4 and c = 5-k. By replacing these terms we get that 16 - 4k(5-k) > 0. By expanding the brackets and rearranging we get that k^2-5k+4>0.

Answered by Alin G. Maths tutor

14981 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient at the point (0, ln 2) on the curve with equation e^2y = 5 − e^−x


Binomial expansion of (1+4x)^5 up to x^2


What is a logarithm?


The expansion of (1+x)^4 is 1 + 4x +nx^2 + 4x^3 + x^4. Find the value of n. Hence Find the integral of (1+√y)^4 between the values 1 and 0 (one top, zero bottom).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences