Find the volume of revolution when the curve defined by y=xe^(2x) is rotated 2*pi radians about the x-axis between x=0 and x=1

This is a standard question that may be found in a C4 mathematics paper. Students should use knowledge of the volume of revolution formula V = piint_{a}^{b} y2dx to find the expression V = piint_{0}^{1} (x2e4x) dx.
Using the integration by parts formula (below), one can yield an intermediary equation, namely V = pi*[e4/4-(1/2)int_{0}^{1} (xe4x)]. Application of the integration by parts formula again solves the second integral of xe4x, and substituting in the limits of 0 and 1 yields a final answer of: (pi/32)(5e4-1).

Integration by parts formula: int(uv') = uv - int(u'v).

Answered by Hanish S. Maths tutor

2682 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y=e^(2x) - x^3. Find dy/dx. (please note this is "e to the power of 2x, minus x cubed")


Why is the derivative of 2^x not x*2^(x-1)?


Let y be a function of x such that y=x^3 + (3/2)x^2-6x and y = f(x) . Find the coordinates of the stationary points .


If y = 4x^3 - 6x^2 + 7 work out dy/dx for this expression


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences