Find the volume of revolution when the curve defined by y=xe^(2x) is rotated 2*pi radians about the x-axis between x=0 and x=1

This is a standard question that may be found in a C4 mathematics paper. Students should use knowledge of the volume of revolution formula V = piint_{a}^{b} y2dx to find the expression V = piint_{0}^{1} (x2e4x) dx.
Using the integration by parts formula (below), one can yield an intermediary equation, namely V = pi*[e4/4-(1/2)int_{0}^{1} (xe4x)]. Application of the integration by parts formula again solves the second integral of xe4x, and substituting in the limits of 0 and 1 yields a final answer of: (pi/32)(5e4-1).

Integration by parts formula: int(uv') = uv - int(u'v).

HS
Answered by Hanish S. Maths tutor

3673 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

let line L have the equation 4y -3x =10, and line M passes through the points (5,-1) and (-1,8), find out if they are perpendicular, parallel, or neither


Find the coordinate of the turning point of the curve y = x^2 - 10x + 7, by completing the square


Differentiate y^3 + 3y^2 + 5


Tom drink drives two days a week, the chance of him being caught per day is 1 in 100. What is the chance he will not be driving after a) one week? b) one year?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning