Find the volume of revolution when the curve defined by y=xe^(2x) is rotated 2*pi radians about the x-axis between x=0 and x=1

This is a standard question that may be found in a C4 mathematics paper. Students should use knowledge of the volume of revolution formula V = piint_{a}^{b} y2dx to find the expression V = piint_{0}^{1} (x2e4x) dx.
Using the integration by parts formula (below), one can yield an intermediary equation, namely V = pi*[e4/4-(1/2)int_{0}^{1} (xe4x)]. Application of the integration by parts formula again solves the second integral of xe4x, and substituting in the limits of 0 and 1 yields a final answer of: (pi/32)(5e4-1).

Integration by parts formula: int(uv') = uv - int(u'v).

HS
Answered by Hanish S. Maths tutor

3033 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let f(x) = x * sin(2x). Find the area beneath the graph of y = f(x), bounded by the x-axis, the y-axis and the line x = π/2.


The equation of a line is y=3x – x^3 a) Find the coordinates of the stationary points in this curve, stating whether they are maximum or minimum points b) Find the gradient of a tangent to that curve at the point (2,4)


How do you solve a Differential equation using integrating factors?


The triangle ABC is such that AC=8cm, CB=12cm, angle ACB=x radians. The area of triangle ABC = 20cm^2. Show that x=0.430 (3sf)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences