What is the polar form of the equation: x^2+y^2 =xy+1

Using Pythagoras, x2 + y2 = r2.Using basic trigonometry, x = rsinθ and y = rcosθ.
xy + 1 = r2sinθcosθ + 1 = (1/2)r2sin2θ + 1
Subbing in both halves and doubling gives:2r2 = r2sin2θ + 2
-> r2(2 - sin2θ)r2 = 2
-> r2 = 2/(2-sin2θ)

HW
Answered by Hansen W. Further Mathematics tutor

4294 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How to integrate ln(x)?


How to multiply and divide by complex numbers


Give the general solution to the Ordinary Differential Equation: (dy/dx) + 2y/x = 3x+2


Integrate xcos(x) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences