What is the polar form of the equation: x^2+y^2 =xy+1

Using Pythagoras, x2 + y2 = r2.Using basic trigonometry, x = rsinθ and y = rcosθ.
xy + 1 = r2sinθcosθ + 1 = (1/2)r2sin2θ + 1
Subbing in both halves and doubling gives:2r2 = r2sin2θ + 2
-> r2(2 - sin2θ)r2 = 2
-> r2 = 2/(2-sin2θ)

HW
Answered by Hansen W. Further Mathematics tutor

5136 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the shortest distance between the lines r = (1, 5, 6) + y(-2, -1, 0) and r = (1, 7, -3) + z(2, 0, 4)


Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


Split x^4/[(x^2+4)*(x-2)^2] into partial fractions and hence differentiate it


Solve this equation: x^2 + 2x + 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning