Solve the equation x^3-5x^2+7x-3=0

First start by considering the x0 coefficient which is -3. These include ±3 and ±1. Substituting x=1 into the polynomial produces an answer of 0 which shows that x=1 is a factor of the polynomial. Therefore x3-5x2+7x-3 = (x-1)(ax2+bx+c). As the x^3 coefficient =1, a must therefore also =1. -c =-3 as the x0 coefficient is 3, so c =3 and equation x coefficients gives 7=-b+c so b=-4. Factorising x2 -4x+3 gives (x-3)(x-1). The solutions of the equation are therefore x=1 and x=3.

AL
Answered by Annabelle L. Maths tutor

7549 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you factorise?


There are n sweets in a bag. Six of the sweets are orange, the rest are yellow. One sweet is removed from the bag without replacement, then another is removed without replacement. Show that n²-n-90=0


The probability of getting heads on a biased coin is 0.8. You flip the coin twice. What is the probability of getting one each of heads and tails?


Solve x^3 - 25 = 103 - x^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning