Solve the following inequality: 2x^2 < x+3

2x2 < x+3, 2x2- x - 3 < 0, (2x - 3) (x + 1) < 0, Positive quadratic. Roots: x = -1 and x = 3/2, Therefore, x takes values greater than -1 and less than 3/2.

Related Further Mathematics A Level answers

All answers ▸

Find the complex number z such that 5iz+3z* +16 = 8i. Give your answer in the form a + bi, where a and b are real numbers.


Finding modulus and argument of complex number (x+iy)


A rectangular hyperbola has parametric equations x = 4t, y = 4/t , (z non 0). Points P and Q on this hyperbola have parameters t = 1/4 and t = 2. Find the equation of the line l which passes through the origin and is perpendicular to the line PQ.


Prove that 27(23^n)+17(10^2n)+22n is divisible by 11 for n belongs to the natural numbers


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences