A circle A has equation x^2+y^2-6x-14y+54=0. Find a) the coordinates of the centre of A, b) the radius of the circle A.

The standard equation of a circle is in the form (x-a)^2+(y-b)^2=r^2, where the coordinates of the centre of the circle is (a,b) and the radius of the circle is r. Therefore, you must put the given equation into the standard form by completing the square for the expresions x^2-6x and y^2-14y in order to find the centre and radius if the circle.When you have completed the square for the two expressions, the equation will be (x-3)^2-9+(y-7)^2-49+54=0. To get the equation into the standard form you must then simplify and rearrange the equation to get (x-3)^2+(y-7)^2=4. Therefore, the coordinates of the centre of the circle A is (3,7) and the radius of the circle A is 2.

EQ
Answered by Evelyn Q. Maths tutor

4521 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given a table showing grouped data and the frequency of each class, find the median Q2


A ball is thrown in the air. The height of the ball at time t is given by: h=5+4t-2t^2. What is its maximum height? At what time does the ball reach this height?


Find D when 8x^3-12x^2-2x+D is divided by 2x+1 when the remainder is -2


Differentiate cos(2x)/(x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning