A circle A has equation x^2+y^2-6x-14y+54=0. Find a) the coordinates of the centre of A, b) the radius of the circle A.

The standard equation of a circle is in the form (x-a)^2+(y-b)^2=r^2, where the coordinates of the centre of the circle is (a,b) and the radius of the circle is r. Therefore, you must put the given equation into the standard form by completing the square for the expresions x^2-6x and y^2-14y in order to find the centre and radius if the circle.When you have completed the square for the two expressions, the equation will be (x-3)^2-9+(y-7)^2-49+54=0. To get the equation into the standard form you must then simplify and rearrange the equation to get (x-3)^2+(y-7)^2=4. Therefore, the coordinates of the centre of the circle A is (3,7) and the radius of the circle A is 2.

EQ
Answered by Evelyn Q. Maths tutor

4077 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I don't understand differentiation. How does it work?


How can you integrate the function (5x - 1)/(x^(3)-x)?


Prove that the square of an odd integer is odd.


What is differentiation and how is it done?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences