A circle A has equation x^2+y^2-6x-14y+54=0. Find a) the coordinates of the centre of A, b) the radius of the circle A.

The standard equation of a circle is in the form (x-a)^2+(y-b)^2=r^2, where the coordinates of the centre of the circle is (a,b) and the radius of the circle is r. Therefore, you must put the given equation into the standard form by completing the square for the expresions x^2-6x and y^2-14y in order to find the centre and radius if the circle.When you have completed the square for the two expressions, the equation will be (x-3)^2-9+(y-7)^2-49+54=0. To get the equation into the standard form you must then simplify and rearrange the equation to get (x-3)^2+(y-7)^2=4. Therefore, the coordinates of the centre of the circle A is (3,7) and the radius of the circle A is 2.

Answered by Evelyn Q. Maths tutor

3921 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = (5x+4)/(3x-8) at the point (2, -7).


What is the gradient of the curve y = 2x^3 at the point (2,2)?


Find the coordinates of the stationary point on the curve y=2x^2+3x+4=0


Differentiate the function X^4 - (20/3)X^3 + 2X^2 + 7. Find the stationary points and classify.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences