How do I solve x^2 > 6 - x

To solve this question we want to find the range of values that x can be to make the statement true. First we must treat it like a normal quadratic equation and move all of the values onto one side like so: x2 + x - 6 > 0. Next we want to factorise the left hand side to get: (x + 3)(x - 2) > 0.The best thing to do here is to draw the graph of y = (x + 3)(x - 2), to do this it we know it has a positive quadratic shape and at y = 0 (where it crosses the x-axis) x = -3 or x = 2. Now we want all the values of x when y = (x + 3)(x - 2) > 0 so effectively where the graph is above the x-axis. We can see from the graph that the outer values of x are positive and so we can say:x < -3 or x > 2

Answered by Ben H. Maths tutor

3377 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Two numbers add to make 1000. What would they have to be to maximise their product?


How do you integrate xcos(x)?


3. The point P lies on the curve with equation y=ln(x/3) The x-coordinate of P is 3. Find an equation of the normal to the curve at the point P in the form y = ax + b, where a and b are constants.


Differentiate y=sin(x)*x^2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences