15 machines work at the same rate. Together, the 15 machines can complete an order in 8 hours. 3 of the machines break down after working for 6 hours. The other machines carry on working until the order is complete. In total, how many hours does EACH

The total number of 'machine hours' needed to complete an order is (15x8) = 120 hoursThe total number of hours worked by the broken machines = (6x3) = 18 hoursTherefore the total number of machine hours needed from the other 12 machines to complete the order = (120-18) = 102Per machine the total number of working hours therefore equals (102/12) = 8.5 hours

ER
Answered by Ethan R. Maths tutor

5921 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

I am struggling to solve algebra equations. I was given the following equation to solve at school and am unsure how to approach it : 4(x + 3) = 2x + 8


Expand and simplify (3 + √ 2)(5 – √ 2)


There are 10 boys and 20 girls in a class. The class has a test. The mean mark for all the class is 60 The mean mark for the girls is 54 Work out the mean mark for the boys.


Solve 0=X^2 +5x +4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning