Using graphs, show how the Taylor expansion can be used to approximate a trigonometric function.

The Taylor expansion/theorem is used to express any function as a power series about a certain point. Using the given formula of the Taylor expansion, we can approximate a trigonometric function (for example, Sin(x)) to increasing orders. By drawing each of these onto overlaying graphs, we can see that as the order of our Taylor expansion increases, we achieve a function that is closer to the original function (Sin(x)). It is important to understand that this is how computers/calculators calculate trigonometric functions.

Related Further Mathematics A Level answers

All answers ▸

How can the integrating factor method be derived to give a solution to a differential equation?


prove by induction that, f(n) = 2^(3n+1) + 3(5^(2n+1)) is divisible by 17 for all n>0.


Are we able to represent linear matrix transformations with complex numbers?


Find the eigenvalues and eigenvectors of the following 3x3 matrix (reading left to right, top to bottom): (1 0 2 3 1 1 2 0 1)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences