Using graphs, show how the Taylor expansion can be used to approximate a trigonometric function.

The Taylor expansion/theorem is used to express any function as a power series about a certain point. Using the given formula of the Taylor expansion, we can approximate a trigonometric function (for example, Sin(x)) to increasing orders. By drawing each of these onto overlaying graphs, we can see that as the order of our Taylor expansion increases, we achieve a function that is closer to the original function (Sin(x)). It is important to understand that this is how computers/calculators calculate trigonometric functions.

MT
Answered by Matthew T. Further Mathematics tutor

1963 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Particles P and Q move in a plane with constant velocities. At time t = 0 the position vectors of P and Q, relative to a fixed point O in the plane, are (16i - 12j) m and -5i + 4j) m respectively. The velocity of P is (i + 2j) m/s and the velocity of Q


Solve the equation 3sinh(2x) = 13 - 3e^(2x), answering in the form 0.5ln(k). where k is an integer


Find the general solution to the differential equation: d^2y/dx^2 - 8 dy/dx +16y = 2x


A particle is projected from the top of a cliff, 20m above the sea level at an angle of 30 degrees above the horizontal at 20m/s. At what vertical speed does it hit the water?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences