Using graphs, show how the Taylor expansion can be used to approximate a trigonometric function.

The Taylor expansion/theorem is used to express any function as a power series about a certain point. Using the given formula of the Taylor expansion, we can approximate a trigonometric function (for example, Sin(x)) to increasing orders. By drawing each of these onto overlaying graphs, we can see that as the order of our Taylor expansion increases, we achieve a function that is closer to the original function (Sin(x)). It is important to understand that this is how computers/calculators calculate trigonometric functions.

MT
Answered by Matthew T. Further Mathematics tutor

2367 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A complex number z has argument θ and modulus 1. Show that (z^n)-(z^-n)=2iSin(nθ).


Are the integers a group under addition? How about multiplication?


How do you find the matrix corresponding to a transformation?


Given that the quadratic equation x^2 + 7x + 13 = 0 has roots a and b, find the value of a+b and ab.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning