Using graphs, show how the Taylor expansion can be used to approximate a trigonometric function.

The Taylor expansion/theorem is used to express any function as a power series about a certain point. Using the given formula of the Taylor expansion, we can approximate a trigonometric function (for example, Sin(x)) to increasing orders. By drawing each of these onto overlaying graphs, we can see that as the order of our Taylor expansion increases, we achieve a function that is closer to the original function (Sin(x)). It is important to understand that this is how computers/calculators calculate trigonometric functions.

MT
Answered by Matthew T. Further Mathematics tutor

2390 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I sketch the locus of |z - 5-3i | = 3 on an Argand Diagram?


How would you show the equation f(x) = 2x – 10 sin x – 2 has a root between 2 and 3 (where x is measured in radians)


How do I sketch accurate graphs for rational functions in a short amount of time? (I.e. A step by step guide of sketching graphs)


Prove that matrix multiplication is not commutative.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning