Using graphs, show how the Taylor expansion can be used to approximate a trigonometric function.

The Taylor expansion/theorem is used to express any function as a power series about a certain point. Using the given formula of the Taylor expansion, we can approximate a trigonometric function (for example, Sin(x)) to increasing orders. By drawing each of these onto overlaying graphs, we can see that as the order of our Taylor expansion increases, we achieve a function that is closer to the original function (Sin(x)). It is important to understand that this is how computers/calculators calculate trigonometric functions.

Related Further Mathematics A Level answers

All answers ▸

Using z=cos(θ)+isin(θ), find expressions for z^n-1/z^n and z^n+1/z^n


Sketch the locus of z on an Argand diagram if arg[(z-5)/(z-3)] = π/6


z = 4 /(1+ i) Find, in the form a + i b where a, b belong to R, (a) z, (b) z^2. Given that z is a complex root of the quadratic equation x^2 + px + q = 0, where p and q are real integers, (c) find the value of p and the value of q.


Show, using de Moivre's theorem, that sin 5x = 16 sin^(5) x - 20 sin^(3) x + 5 sin x 


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences