given y = x^2 - 7x + 5, find dy/dx from first principles

using the delta method for first principles derivation:
Define the differential: dy/dx = limit as h -> 0 f(x+h) - f(x)/h where f(x) = ysubstitute the equation into the differential: dy/dx = (x+h)^2 - 7*(x+h) + 5 - (x^2 - 7x +5)/hexpand the brackets to form quadratic: dy/dx = x^2 + h^2 + 2xh - 7x -7h + 5 - x^2 + 7x - 5/hcancel out the variables: dy/dx = h^2 + 2xh - 7h / hdivide by h: dy/dx = h + 2x - 7Finish it off by taking the limit of h to be 0: dy/dx = 2x - 7 Simple method to follow with an example for a 5 mark question that consistently comes up in core 1.

Answered by Dafydd B. Maths tutor

7222 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the sum, chain and product rules, differentiate the function f(x) = x^n +x^3 * sin(1/[3x])


Solve dy/dx= (x√(x^2+3))/e^2y given that y=0 when x=1, giving your answer in the form y = f(x)


Write down the coordinates of the centre and the radius of the circle with equation x^2+y^2-4x-8y+11=0


Integrate lnx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences