given y = x^2 - 7x + 5, find dy/dx from first principles

using the delta method for first principles derivation:
Define the differential: dy/dx = limit as h -> 0 f(x+h) - f(x)/h where f(x) = ysubstitute the equation into the differential: dy/dx = (x+h)^2 - 7*(x+h) + 5 - (x^2 - 7x +5)/hexpand the brackets to form quadratic: dy/dx = x^2 + h^2 + 2xh - 7x -7h + 5 - x^2 + 7x - 5/hcancel out the variables: dy/dx = h^2 + 2xh - 7h / hdivide by h: dy/dx = h + 2x - 7Finish it off by taking the limit of h to be 0: dy/dx = 2x - 7 Simple method to follow with an example for a 5 mark question that consistently comes up in core 1.

Answered by Dafydd B. Maths tutor

7069 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y = ln (x+1) sin x , find dy/dx


Finding stationary points


A straight line passes through the point (2,1) and has a gradient of 3. Find the co-ordinates of the points where this line intersects the axes


OCR C2 2015 Question 8: (a) Use logarithms to solve the equation 2^(n-3) = 18,000 , giving your answer correct to 3 significant figures. (b) Solve the simultaneous equations log2(x) + log2(y) = 8 & log2(x^2/y) = 7.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences