given y = x^2 - 7x + 5, find dy/dx from first principles

using the delta method for first principles derivation:
Define the differential: dy/dx = limit as h -> 0 f(x+h) - f(x)/h where f(x) = ysubstitute the equation into the differential: dy/dx = (x+h)^2 - 7*(x+h) + 5 - (x^2 - 7x +5)/hexpand the brackets to form quadratic: dy/dx = x^2 + h^2 + 2xh - 7x -7h + 5 - x^2 + 7x - 5/hcancel out the variables: dy/dx = h^2 + 2xh - 7h / hdivide by h: dy/dx = h + 2x - 7Finish it off by taking the limit of h to be 0: dy/dx = 2x - 7 Simple method to follow with an example for a 5 mark question that consistently comes up in core 1.

DB
Answered by Dafydd B. Maths tutor

8538 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has a equation y=(2x-3)^5; point P (0.5,-32)lies on that curve. Work out the equation to the tangent to C at point P in the form of y=mx+c


Differentiate y = ln (3x + 2)


integrate the following: 2x^4 - 4/sqrt(x) +3 with respect to x


Chris claims that, “for any given value of x , the gradient of the curve y=2x^3 +6x^2 - 12x +3 is always greater than the gradient of the curve y=1+60x−6x^2” . Show that Chris is wrong by finding all the values of x for which his claim is not true.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning