The Curve C has equation y = 3x^4 - 8x^3 -3. Find the first and second derivative w.r.t x and verify that y has a stationary point when x = 2. Determine the nature of this stationary point, giving a reason for your answer.

The first derivative is otherwise denoted by dy/dx.dy/dx = 12x^3 -24x^2.The second derivative is denoted by d2y/dx2, otherwise known as the first derivative of the function dy/dx.d2y/dx2 = 36x^2 - 48x.A stationary point exists if dy/dx = 0 has a valid solution for x. dy/dx = 12x^3 -24x^2 = 0 ==> x = 0 and x = 2. (Check by substitution (dy/dx at x =2) and by finding the solution for dy/dx = 0).Substitute x =2 into d2y/dx2 = 36x^2 - 48x. The result is at x =2, d2y/dx2 is 48 > 0 and hence this stationary point is classified as a minima / minimum.

Answered by Jemisha B. Maths tutor

4811 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the line through the following points: (-2, -3) and (1, 5)


A ball is released on a smooth ramp at a distance of 5 metres from the ground. Calculate its speed when it reaches the bottom of the ramp.


Two particles A and B of mass 2kg and 3kg respectively are moving head on. A is moving at 5m/s and B is moving at 4m/s. After the collision, A rebounds at 4m/s. What is the speed of B and what direction is it moving in?


Given an integral of a function parametrized with respect to an integer index n, prove a given recursive identity and use this to evaluate the integral for a specific value of n.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences