Given ∫4x^3+4e^2x+k intergrated between the bounds of 3 and 0 equals 2(46+e^6). Find k.

Sorry I couldn't write the question properly in the question box. The question should read:Given ∫304x3+4e2x+k dx = 2(46+e6)Find K.Step 1- Intergrate ∫304x3+4e2x+k x4+2e2x+kx+cStep 2- Sub in bounds (34+2e6+3k+c)-(04+2e0+0k+c)Step 3- Simplify 81+2e6+3k-1Step 4- Equate to Answer 80+2e6+3k = 2(46+e6)Step 5- Simplify k = 4

Answered by Charlie M. Maths tutor

5648 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

June 2008 C1 Paper Differentiation Question


A particle of mass m moves from rest a time t=0, under the action of a variable force f(t) = A*t*exp(-B*t), where A,B are positive constants. Find the speed of the particle for large t, expressing the answer in terms of m, A, and B.


Differentiate the expression x^6+5x^4+3 with respect to x


How many solutions are there to the equation sin x = a, if 0<a<1 and 0<x<pi


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences