2 identical trolleys of mass M(one is loaded with 2 blocks of mass m) are on a ramp inclined at 35° and are connected by a wire that passes around a pulley at the top of the ramp. They are released and accelerate accordingly. Show that a=(mgsin35°)/(M+m).

Construction of Free Body Diagrams of the Trolleys and resolving the forces (Weight and Tension) components acting parallel to the ramp (assuming friction and air resistance are negligible) show that for Trolley A: F=ma--> (M+2m)a=(M+2m)gsin35-T and for Trolley B: F=ma-->Ma=T-Mg. Note that the magnitude of acceleration a is identical for both trolleys but acceleration acts in opposite directions (assuming pulley is massless and frictionless) Rearranging the equations in terms of T gives T(Trolley A)=(M+2m)gsin35-(M+2m)a and T(Trolley B)=Ma+Mgsin35. Tension is the same throughout the whole wire (assuming light inextinsible wire) so combining the T equations gives (M+2m)gsin35-Mgsin35=Ma+(M+2m)a. Factorising both sides with (gsin35) and (a) accordingly and simplifying results in gsin35(M+2m-M)=a(M+M+2m) --> 2mgsin35=2a(M+m). Finally rearranging for a gives the solution which is a=(mgsin35)/(M+m)

NV
Answered by Neophytos V. Physics tutor

3762 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Derive an expression for the time taken, (t) for a test mass to fall to the ground from a height (h) in a uniform gravitational field (g = 9.81 ms^-2)


Find an expression for the escape velocity of a test object.


What is the difference between internal energy, temperature, and heat?


State assumptions made about the motion of the molecules in a gas in the derivation of the kinetic theory of gases equation.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning