2 identical trolleys of mass M(one is loaded with 2 blocks of mass m) are on a ramp inclined at 35° and are connected by a wire that passes around a pulley at the top of the ramp. They are released and accelerate accordingly. Show that a=(mgsin35°)/(M+m).

Construction of Free Body Diagrams of the Trolleys and resolving the forces (Weight and Tension) components acting parallel to the ramp (assuming friction and air resistance are negligible) show that for Trolley A: F=ma--> (M+2m)a=(M+2m)gsin35-T and for Trolley B: F=ma-->Ma=T-Mg. Note that the magnitude of acceleration a is identical for both trolleys but acceleration acts in opposite directions (assuming pulley is massless and frictionless) Rearranging the equations in terms of T gives T(Trolley A)=(M+2m)gsin35-(M+2m)a and T(Trolley B)=Ma+Mgsin35. Tension is the same throughout the whole wire (assuming light inextinsible wire) so combining the T equations gives (M+2m)gsin35-Mgsin35=Ma+(M+2m)a. Factorising both sides with (gsin35) and (a) accordingly and simplifying results in gsin35(M+2m-M)=a(M+M+2m) --> 2mgsin35=2a(M+m). Finally rearranging for a gives the solution which is a=(mgsin35)/(M+m)

Answered by Neophytos V. Physics tutor

3078 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How would you calculate the vertical and horizontal components of the velocity of an object with an initial velocity of 15m/s which is travelling upwards at an angle of 30 degrees to the horizontal?


What is the difference between nuclear fusion and nuclear fission?


What is the most effective use of the equation sheet?


Explain why gas bubbles rise faster through magma as they start to expand. (3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences