Differentiate x^3⋅cos(5⋅x) with respect to x.

In order to solve this problem we will have to use the product rule as follows: d/dx[x^3⋅cos(5⋅x)]=[d/dx(x^3)]⋅cos(5x)+(x^3)⋅[d/dx[cos(5x)]]=(3⋅x^2)⋅cos(5⋅x)+(x^3)⋅−5⋅sin(5⋅x)=3⋅x^2⋅cos(5⋅x)−5⋅x^3⋅sin(5⋅x)

Answered by Tianyu L. Maths tutor

5505 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Curve C has equation x^2 - 3xy - 4y^2 + 64 = 0. a) find dy/dx in terms of x and y. b) find coordinates where dy/dx=0.


Find the area bounded be the curve with the equation y = x^2, the line x = 1, the line x = -1, and the x-axis.


(19x - 2)/((5 - x)(1 + 6x)) can be expressed as A/(5-x) + B/(1+6x) where A and B are integers. Find A and B


What is differentiation


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences