Differentiate x^3⋅cos(5⋅x) with respect to x.

In order to solve this problem we will have to use the product rule as follows: d/dx[x^3⋅cos(5⋅x)]=[d/dx(x^3)]⋅cos(5x)+(x^3)⋅[d/dx[cos(5x)]]=(3⋅x^2)⋅cos(5⋅x)+(x^3)⋅−5⋅sin(5⋅x)=3⋅x^2⋅cos(5⋅x)−5⋅x^3⋅sin(5⋅x)

Answered by Tianyu L. Maths tutor

4955 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = x^2 +2x + 3, find dy/dx.


Given that (cos(x)^2 + 4 sin(x)^2)/(1-sin(x)^2) = 7, show that tan(x)^2 = 3/2


When using the trapezium rule to approximate area underneath a curve between 2 limits, what is the effect of increasing the number of strips used?


What is implicit differentiation and how do I do it?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences