Differentiate x^3⋅cos(5⋅x) with respect to x.

In order to solve this problem we will have to use the product rule as follows: d/dx[x^3⋅cos(5⋅x)]=[d/dx(x^3)]⋅cos(5x)+(x^3)⋅[d/dx[cos(5x)]]=(3⋅x^2)⋅cos(5⋅x)+(x^3)⋅−5⋅sin(5⋅x)=3⋅x^2⋅cos(5⋅x)−5⋅x^3⋅sin(5⋅x)

Answered by Tianyu L. Maths tutor

5507 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact solution of the equation in its simplest form: 3^x * e^4x = e^7.


Differentiate with respect to x: x*cos(x)


A curve has the equation y = 2x cos(3x) + (3x^2-4) sin(3x). Find the derivative in the form (mx^2 + n) cos(3x)


What is mathematical induction and how does it work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences