Differentiate x^3⋅cos(5⋅x) with respect to x.

In order to solve this problem we will have to use the product rule as follows: d/dx[x^3⋅cos(5⋅x)]=[d/dx(x^3)]⋅cos(5x)+(x^3)⋅[d/dx[cos(5x)]]=(3⋅x^2)⋅cos(5⋅x)+(x^3)⋅−5⋅sin(5⋅x)=3⋅x^2⋅cos(5⋅x)−5⋅x^3⋅sin(5⋅x)

TL
Answered by Tianyu L. Maths tutor

5562 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Mechanics (M1): Particle moving on a straight line with constant acceleration (Relationships of the 5 Key Formulae)


z = 5 - 3i Find z^2 in a form of a + bi, where a and b are real constants


Evaluate the integral ∫(sin3x)(cos3x)dx (C4 Integration)


Consider the function f (x) = (2/3) x^3 + bx^2 + 2x + 3, where b is some undetermined coefficient: (a) find f'(x) and f''(x) and (b) if you know that f(x) has a stationary point at x = 2, use this information to find b.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences