Answers>Maths>IB>Article

Consider the infinite geometric sequence 25 , 5 , 1 , 0.2 , ... (a) Find the common ratio. (b) Find (i) the 10th term; (ii) an expression for the nth term. (c) Find the sum of the infinite sequence.

QUESTION (a) R = U(n+1)/U(n ) = 5/25= 0.2(b) (i) U(10) = 25 x (1/5)^9 = 0.0000128 (ii) U(n) = 25 x (1/5)^(n-1)(c) S = U(1)/(1-r) = 25/(1-(1/5))=25/(4/5))=125/4=31.25

Answered by Carlota R. Maths tutor

5557 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


A geometric sequence has all its terms positive. The first term is 7 and the third term is 28.


Having x(x+4)=y, calculate dy/dx


What is the equation of the tangent drawn to the curve y = x^3 - 2x + 1 at x = 2?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences