A mass of 3kg rests on a rough plane inclined at 60 degrees to the horizontal. The coefficient of friction is 1/5. Find the force P acting parallel to the plane applied to the mass, in order to just prevent motion down the plane.

Firstly draw a diagram of the problem.Then resolve the forces into their components parallel and perpendicular to the plane.Resolving parallel: P + Fmax = 3gsin(60) equation 1.Resolving perpendicular: R = 3gcos(60) =14.7N equation 2. Then substitute Fmax= Mu.R into equation 1 and then sub R (equation 2) into equation 1. Then solve to find P. P = 3gsin(60)- Mu.R P = 3gsin(60) - 0.2x14.7= 22.5 N

JM
Answered by Jonathan M. Maths tutor

4091 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the range of a degree-2 polynomial function such as 2x^2 +1, or x^2 + 2x - 3.


A curve with equation y=f(x) passes through point P at (4,8). Given that f'(x)=9x^(1/2)/4+5/2x^(1/2)-4 find f(X).


integrate x^2 + ln(x)


The curve C has the equation y=((x^2+4)(x-3))/2*x where x is not equal to 0 . Find the tangent to the curve C at the point where x=-1 in the form y=mx+c


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences