A mass of 3kg rests on a rough plane inclined at 60 degrees to the horizontal. The coefficient of friction is 1/5. Find the force P acting parallel to the plane applied to the mass, in order to just prevent motion down the plane.

Firstly draw a diagram of the problem.Then resolve the forces into their components parallel and perpendicular to the plane.Resolving parallel: P + Fmax = 3gsin(60) equation 1.Resolving perpendicular: R = 3gcos(60) =14.7N equation 2. Then substitute Fmax= Mu.R into equation 1 and then sub R (equation 2) into equation 1. Then solve to find P. P = 3gsin(60)- Mu.R P = 3gsin(60) - 0.2x14.7= 22.5 N

JM
Answered by Jonathan M. Maths tutor

4221 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the function x(2x+5)^0.5


Integration of ln(x)


Given that y > 0, find ∫((3y - 4)/y(3y + 2)) dy (taken from the Edexcel C4 2016 paper)


Show that cosec(2x) + cot(2x) = cot(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences