A mass of 3kg rests on a rough plane inclined at 60 degrees to the horizontal. The coefficient of friction is 1/5. Find the force P acting parallel to the plane applied to the mass, in order to just prevent motion down the plane.

Firstly draw a diagram of the problem.Then resolve the forces into their components parallel and perpendicular to the plane.Resolving parallel: P + Fmax = 3gsin(60) equation 1.Resolving perpendicular: R = 3gcos(60) =14.7N equation 2. Then substitute Fmax= Mu.R into equation 1 and then sub R (equation 2) into equation 1. Then solve to find P. P = 3gsin(60)- Mu.R P = 3gsin(60) - 0.2x14.7= 22.5 N

Answered by Jonathan M. Maths tutor

3798 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 2cos(x)sin(x) with respect to x


integration by parts: x^-2lnx


The complex conjugate of 2-3i is also a root of z^3+pz^2+qz-13p=0. Find a quadratic factor of z^3+pz^2+qz-13p=0 with real coefficients and thus find the real root of the equation.


A particle P moves with acceleration (-3i + 12j) m/s^2. Initially the velocity of P is 4i m/s. (a) Find the velocity of P at time t seconds. (b) Find the speed of P when t = 0.5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences