Find the area enclosed between C, the curve y=6x-x^2, L, the line y=16-2x and the y axis.

First we need to find the intersection point(s) of L and C so set 6x-x2=16-2x and rearrange to get x2-8x+16=0 so (x-4)2=0.Repeated root so line is tangent to the curve at x=4, y=16-2(4)=8 that is the point (4,8).Area= integral between 0 and 4 (16-2x) dx - integral between 0 and 4 (6x-x2) dx= [16x - x2 - 3x2 + x3/3] evaluated between 0 and 4= 64/3

DM
Answered by David M. Maths tutor

3292 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the area bound by the x-axis, the lines x=1 and x=3 and the curve y=3x^(2)-1/x ? Answer in exact form.


Show that the integral ∫(1-2 sin^2⁡x)/(1+2sinxcosx) dx = (1/2) ln2 between the limits π/4 and 0. [5 marks]


The quadratic equation 2x^2 + 6x + 7 = 0 has roots A and B. Write down the value of A + B and the value of AB


What is y' when y=3xsinx?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences