Find the area enclosed between C, the curve y=6x-x^2, L, the line y=16-2x and the y axis.

First we need to find the intersection point(s) of L and C so set 6x-x2=16-2x and rearrange to get x2-8x+16=0 so (x-4)2=0.Repeated root so line is tangent to the curve at x=4, y=16-2(4)=8 that is the point (4,8).Area= integral between 0 and 4 (16-2x) dx - integral between 0 and 4 (6x-x2) dx= [16x - x2 - 3x2 + x3/3] evaluated between 0 and 4= 64/3

Answered by David M. Maths tutor

2993 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

d/dx[sin(x) + cos(x)]


Differentiaate the folowing equation with respect to x: y=4x^3-3x^2+9x+2


What are the advantages of using numerical integration (Trapezium rule, Simpson's rule and so on) over direct integration?


Integration


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences