Find the area enclosed between C, the curve y=6x-x^2, L, the line y=16-2x and the y axis.

First we need to find the intersection point(s) of L and C so set 6x-x2=16-2x and rearrange to get x2-8x+16=0 so (x-4)2=0.Repeated root so line is tangent to the curve at x=4, y=16-2(4)=8 that is the point (4,8).Area= integral between 0 and 4 (16-2x) dx - integral between 0 and 4 (6x-x2) dx= [16x - x2 - 3x2 + x3/3] evaluated between 0 and 4= 64/3

Answered by David M. Maths tutor

3162 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate( x^3+4x^2+3)dx


The polynomial f(x) is define by f(x) = 3x^3 + 2x^2 - 8x + 4. Evaluate f(2).


How do you prove the chain rule?


What is 'grouping' and how does it work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences