Find the equation of the normal to the curve y=2x^3 at the point on the curve where x=2. Write in the form of ax+by=c.

For x = 2, y = 16. Calculate the gradient of the curve at y = 2, dy/dx = 6x^2, dy/dx = 24. This is also the gradient of the tangent to the curve at x = 2. It is a rule that the products of the gradients of two lines that are perpendicular to each other must equal -1 (m1m2 = -1). Using this, you can calculate the gradient of the normal to the curve, m2 = -1/24. You can now find the y intercept of the normal by substituting values into the equation y = mx + c. 16 = (-1/24)(2) + c, from rearranging c = 193/12. To get the final answer substitute values into the form ax + by = c which is rearranged from by = ax + c. y = (-1/24)x + 193/12, rearrange this to get (1/24)x + y + 193/12. To make this a lot nicer to read by having whole numbers and no fractions, multiply everything by 24 to get x + 24 y = 386, which is your final answer.

Answered by Maddy L. Maths tutor

8086 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Evaluate the following : ∫ln(x) dx


What is a geometric series?


What is an improper fraction, and how to I make thisproper so that it can be differentiated?


express the following fraction in the form of m + (n)^1/2. the fraction is ((3*(5)^1/2)^2 - 7)/(3 + 7*(5)^1/2). where m,n are real numbers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences