Find the equation of the normal to the curve y=2x^3 at the point on the curve where x=2. Write in the form of ax+by=c.

For x = 2, y = 16. Calculate the gradient of the curve at y = 2, dy/dx = 6x^2, dy/dx = 24. This is also the gradient of the tangent to the curve at x = 2. It is a rule that the products of the gradients of two lines that are perpendicular to each other must equal -1 (m1m2 = -1). Using this, you can calculate the gradient of the normal to the curve, m2 = -1/24. You can now find the y intercept of the normal by substituting values into the equation y = mx + c. 16 = (-1/24)(2) + c, from rearranging c = 193/12. To get the final answer substitute values into the form ax + by = c which is rearranged from by = ax + c. y = (-1/24)x + 193/12, rearrange this to get (1/24)x + y + 193/12. To make this a lot nicer to read by having whole numbers and no fractions, multiply everything by 24 to get x + 24 y = 386, which is your final answer.

ML
Answered by Maddy L. Maths tutor

9431 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate sin(x)cos(x) with respect to x?


find dy/dx= x^2 +x^3


Consider f(x)=a/(x-1)^2-1. For which a>1 is the triangle formed by (0,0) and the intersections of f(x) with the positive x- and y-axis isosceles?


How do I do binomial expansions for positive integer n?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning