Find the gradient of the line on which the points (1,3) and (3,4) lie and find the y-coordinate of the line at x = 7.

The gradient is m = (y1-y0)/(x1-x0) = (4-3)/(3-1) = 1/2. So the equation of the line is y= x/2 + c where c is a constant. To find the constant, c, we will input one of the given coordinates (1,3). This shows 3 = 1/2 + c, so c= 5/2 or 2.5. Therefore, the equation of this line is y = x/2 + 5/2. So, when x=7, y = 7/2 + 5/2 = 6.

RL
Answered by Ryan L. Maths tutor

3270 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 3x^2 + 6x + 3 = 0


What other A Level subjects would be useful towards applying to do a Mathematics degree?


A cuboid has sides such that the longest side is two units more than the shortest side, and the middle length side is one unit longer than the shortest side. The total surface area of the cuboid is 52 units². What is the length of the shortest side?


Solve the simultaneous equations: x^2 + y^2 = 25 and y − 2x = 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning