How do I show two vectors are perpendicular?

Vectors can describe a line of particular length ("magnitude") and direction. The angle x between two vectors a and b can be found using the formula a.b = |a| |b| cosx. For the vectors to be perpendicular (at right angles) then cosx = 0, so we know that the dot product or scalar product a.b must = 0. If you calculate the scalar product and show it = 0 the vectors must be perpendicular.
To calculate the scalar product of two vectors eg a = 3i + 4j - 12k and b= 4i + 3j + 2k we simply multiply the two i terms, the two j terms, the two k terms and add them all up, being careful with the + or - signs. So here a.b = 12 + 12 - 24 = 0. Therefore a and b are perpendicular.

Answered by Sarah A. Maths tutor

80048 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

how do you differentiate tan(x)


integrate 1/(x^2+4x+13)


A sequence is defined as: U(n+1) = 1/U(n) where U(1)=2/3. Find the sum from r=(1-100) for U(r)


Find the two real roots of the equation x^4 -5=4x^2 Give the roots in an exact form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences