A cannon is fired at 30 degrees from the ground and the cannonball has initial velocity of 15 m/s. What is the height of the highest point the cannonball reaches and how far is this point horizontally from the cannon?

With this type of question always draw a diagram with the values on it. We can assume the positive direction is upwards. Start with considering the vertical motion and use SUVAT. s= ? (this is what we are looking for- the height above the ground of the cannonball). u= 15sin30 = 7.5 m/s (this is the vertical component of the initial velocity of 15 m/s). v= 0 (the vertical component of velocity at the highest point is always zero). a= -g = -9.81 m/s2 (this is acceleration due to gravity- it is negative because it is acting downwards). t is unknown so we use the corresponding suvat equation (without t in it) v2 = u2 + 2as . Rearrange for s and plug in values to find that s= 2.87 m (height at the highest point). Consider the horizontal motion ( where horizontal velocity is constant for projectile motion). distance = speed x time = 15cos30 x t. Find time using v=u+at from vertical values, as vertical and horizontal time are the same. t= 0.76 s . So the horizontal distance of the heighest point is x= 15cos30 x 0.76 = 9.87 m (horizontal distance from highest point).

EV
Answered by Elena V. Physics tutor

8413 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A Uranium-(238,92) nucleus decays into a Thorium-234 nucleus by the emission of an alpha-particle. Given Thorium has a chemical symbol Th build a nuclear equation.


What happens to the pressure inside a gas-filled ball when the temperature is increased? Explain your answer, stating the assumption made.


What is the total capacitance of a circuit containing a 3microfarad capacitor and a 2microfarad capacitor in series.


A car of mass 1500kg is travelling at 10 ms-1 along a horizontal road. A brake force of 3000N brings it to rest. Calculate the deceleration of the car and the distance travelled by the car whilst decelerating.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning