How do we use the Chain-rule when differentiating?

The Chain-rule is used to differentiate a function of a function. Running through an example:Let's say want to differentiate the function y = (2x+1)^3. We can substitute a variable, w, in order to differentiate using the chain rule.Let (2x+1) = w . We now have y = (w)^3. If we differentiate this we get the function differentiated with respect to w.Hence, (dy/dw) = 3(w)^2. However we want to find (dy/dx). If we look carefully we can see that (dy/dx) = (dy/dw) * (dw/dx). This means that if we can find (dw/dx), we can multiply it by 3(w)^2 to find (dy/dx). We know that w = 2x+1. Differentiating this with respect to x we get (dw/dx) = 2. Now we have what we need to find (dy/dx).(dy/dx) = (dy/dw) * (dw/dx)(dy/dx) = [3(w)^2] * [2] (dy/dx) = 6(w)^2.Now all we need is to put it in terms of x. If we substitute w = 2x+1 into (dy/dx) we get:(dy/dx) = 6(2x+1)^2.This is our final answer. In general, we can find (dy/dx) using the chain rule by applying the fact that (dy/dx) = (dy/dw)(dw/dx).For functions of functions of functions we can use (dy/dx) = (dy/dw)(dw/du)*(du/dx) and so on for longer functions.

Answered by Hira R. Maths tutor

3406 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I express y=acosx+bsinx in the form y=Rcos(x-c)?


Differentiate the equation y = (2x+5)^2 using the chain rule to determine the x coordinate of a stationary point on the curve.


The region below the curve y = e^x + e^(-x) and the lines x = 0, x = ln4 is rotated 2π radians about the x-axis. Find the volume of the resulting solid.


Show that sqrt(27) + sqrt(192) = a*sqrt(b), where a and b are prime numbers to be determined


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences