Integrate y= x^3+3x^2-4x-7 between x values 1 and 3

Firstly, integrate y with respect to dx. Increase the powers of x by 1 and then divide the coefficient of x by the new power of x. I.e.: x^3 becomes 1/4x^4. The power increases from 3 to 4 and the coefficient, 1, is divided but the new power 4 to give a new coefficient of a quarter. Integrating the full expression gives: = 1/4x^4+x^3-2x^2-7x+c. C is the constant but at the next stage of the question will become irrelevant.
now the x values need to be added into this new integral and subtracted from one another as follows:[1/4(3)^4+(3)^3-2(3)^2-7(3)]-[1/4(1)^4+(1)^3-2(1)^2-7(1)]=[81/4+27-18-21]-[1/4+1-2-7]=[20-12+8]=16

Answered by Louis A. Maths tutor

2688 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx when y = x(4x + 1)^1/2


Differentiate the function: y = sin(x^2)*ln(5x)


differentiate the following to find the equation for the gradient of the curve in terms of x and y: 3x^3 + 4x^2 + 5xy + 7y = 0


Express cos(2x) in the form acos^2(x) + b, where a and b are constants.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences