Integrate y= x^3+3x^2-4x-7 between x values 1 and 3

Firstly, integrate y with respect to dx. Increase the powers of x by 1 and then divide the coefficient of x by the new power of x. I.e.: x^3 becomes 1/4x^4. The power increases from 3 to 4 and the coefficient, 1, is divided but the new power 4 to give a new coefficient of a quarter. Integrating the full expression gives: = 1/4x^4+x^3-2x^2-7x+c. C is the constant but at the next stage of the question will become irrelevant.
now the x values need to be added into this new integral and subtracted from one another as follows:[1/4(3)^4+(3)^3-2(3)^2-7(3)]-[1/4(1)^4+(1)^3-2(1)^2-7(1)]=[81/4+27-18-21]-[1/4+1-2-7]=[20-12+8]=16

Answered by Louis A. Maths tutor

2634 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The height x metres, of a column of water in a fountain display satisfies the differential equation dx/dt = 8sin(2t)/(3sqrt(x)), where t is the time in seconds after the display begins. (a) Solve the differential equation, given that x(0)=0


Differentiate 3x^2+1/x and find the x coordinate of the stationary point of the curve of y=3x^2+1/x


How do you find (and simplify) an expression, in terms of n, for the sum of the first n terms of the series 5 + 8 + 11 + 14 + ... ?


differentiate y = 4x^3(12e^-4x) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences