Differentiate f(x) = 2xlnx.

Use the chain rule: f'(x) = v(du/dx) +u(dv/dx).

Let u = 2x, du/dx = 2, v = lnx, dv/dx = 1/x

Using this information: f'(x) = 2lnx + 2x/x

This simplifies to f'(x) = 2lnx +2.

TV
Answered by Tom V. Maths tutor

20605 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given f(x)=2x^3 - 2x^2 + 8x, find f'(x) and f"(x).


How would you integrate ln(x) with respect to x?


Solve x^2 + 8x +3 = 0 by completing the square.


Differentiate y=4x^2+3x+9


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences