A curve is defined with the following parameters; x = 3 - 4t , y = 1 + 2/t . Find dy/dx in terms of x and y.

Using the chain rule, we know that dy/dx = dy/dt . dt/dx Therefore we differentiate both equations with respect to t:dx/dt = -4dy/dt = -2/(t^2)therefore dy/dx = -1/4 . -2/(t^2)dy/dx = 1/(2t^2) ... (we know that t = (3-x)/4 )therefore dy/dx = 8/((3-x)^2)

BA
Answered by Brandon A. Maths tutor

3394 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find tan(A-B) sec^2(A) - 2tan(A) = 16 && sin(B)sec^2(B) = 64cos(B)cosec^2(B)


How to express (4x)/(x^2-9)-2/(x+3)as a single fraction in its simplest form.


The curve y = 2x^3 -ax^2 +8x+2 passes through the point B where x = 4. Given that B is a stationary point of the curve, find the value of the constant a.


How to calculate the inverse of a 2x2 matrix


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning