A curve is defined with the following parameters; x = 3 - 4t , y = 1 + 2/t . Find dy/dx in terms of x and y.

Using the chain rule, we know that dy/dx = dy/dt . dt/dx Therefore we differentiate both equations with respect to t:dx/dt = -4dy/dt = -2/(t^2)therefore dy/dx = -1/4 . -2/(t^2)dy/dx = 1/(2t^2) ... (we know that t = (3-x)/4 )therefore dy/dx = 8/((3-x)^2)

BA
Answered by Brandon A. Maths tutor

3299 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the method used for differentiation?


Using integration by parts, and given f(x) = 3xcos(x), find integrate(f(x) dx) between (pi/2) and 0.


Find the turning point of the line y = x^2 + 2x -1


The curve has equation y = x^3 - x^2 - 5x + 7 and the straight line has equation y = x + 7. One point of intersection, B, has coordinates (0, 7). Find the other two points of intersection, A and C.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning