A curve is defined with the following parameters; x = 3 - 4t , y = 1 + 2/t . Find dy/dx in terms of x and y.

Using the chain rule, we know that dy/dx = dy/dt . dt/dx Therefore we differentiate both equations with respect to t:dx/dt = -4dy/dt = -2/(t^2)therefore dy/dx = -1/4 . -2/(t^2)dy/dx = 1/(2t^2) ... (we know that t = (3-x)/4 )therefore dy/dx = 8/((3-x)^2)

Answered by Brandon A. Maths tutor

2862 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to express (4x)/(x^2-9)-2/(x+3)as a single fraction in its simplest form.


The point P lies on the curve C: y=f(x) where f(x)=x^3-2x^2+6x-12 and has x coordinate 1. Find the equation of the line normal to C which passes through P.


Integrate the function y = 2x^2 + 3x + 8 with respect to x.


differentiate with respect to x : y = x^2 -5x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences