∫ log(x) dx

Using "Integration by parts" or "reverse chain rule" .
Recall formula for intergration by parts: "∫f'(x) g(x) dx = f(x)g(x) - ∫f(x)g'(x)dx"
Then set f'(x) = 1, g(x) = log(x). Can calculate f(x) = x, g'(x) = 1/x.
Then plug into the formula to get ∫log(x)dx = xlog(x) - ∫1 dx = xlog(x) - x +c

Answered by Michael T. Maths tutor

47682 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I get the eigenvalues, x, of a matrix, M, with eigenvectors, v?


Question 3 on the OCR MEI C3 June 2015 paper. Find the exact value of Integral x^3 ln x dx between 1 and 2.


Find the first 4 term of the binomial expansion (2-4x)^5


Find the equation of the normal to the curve y = 2x^2 -3x +7 at the point x = 1.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences