∫ log(x) dx

Using "Integration by parts" or "reverse chain rule" .
Recall formula for intergration by parts: "∫f'(x) g(x) dx = f(x)g(x) - ∫f(x)g'(x)dx"
Then set f'(x) = 1, g(x) = log(x). Can calculate f(x) = x, g'(x) = 1/x.
Then plug into the formula to get ∫log(x)dx = xlog(x) - ∫1 dx = xlog(x) - x +c

Answered by Michael T. Maths tutor

47333 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of f(x)=exp((tanx)^(1/2))


Prove that 1 + tan^2 x = sec^2 x


Using Discriminants to Find the Number of Roots of a Quadratic Curve


Simplify and solve for x. log(x+1)+log 5=2. Note, log is the natural log in this case


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences