∫ log(x) dx

Using "Integration by parts" or "reverse chain rule" .
Recall formula for intergration by parts: "∫f'(x) g(x) dx = f(x)g(x) - ∫f(x)g'(x)dx"
Then set f'(x) = 1, g(x) = log(x). Can calculate f(x) = x, g'(x) = 1/x.
Then plug into the formula to get ∫log(x)dx = xlog(x) - ∫1 dx = xlog(x) - x +c

Answered by Michael T. Maths tutor

47851 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve algebraically: 2x - 5y = 11, 3x + 2y = 7


Find the area bounded by the curve y=(sin(x))^2 and the x-axis, between the points x=0 and x=pi/2


Given y=(1+x^3)^0.5, find dy/dx.


Express 1/(x(1-3x)) in partial fractions.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences