∫ log(x) dx

Using "Integration by parts" or "reverse chain rule" .
Recall formula for intergration by parts: "∫f'(x) g(x) dx = f(x)g(x) - ∫f(x)g'(x)dx"
Then set f'(x) = 1, g(x) = log(x). Can calculate f(x) = x, g'(x) = 1/x.
Then plug into the formula to get ∫log(x)dx = xlog(x) - ∫1 dx = xlog(x) - x +c

Answered by Michael T. Maths tutor

48078 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Core 3 - Modulus: Solve the equation |x-2|=|x+6|.


How does the product rule for differentiation work


Integrate lnx


Solve for x, between 0 and 360 degrees, 4cos2 (x) + 7sin (x) – 2 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences