Given that y = arcsinh(x), show that y=ln(x+ sqrt(x^2 + 1) )

In questions involving hyperbolic functions and natural logs, it is often useful to rewrite things in terms of e, since then you might be able to take a natural log at the end of your answer. Here, we can rewrite y = arcsinh(x) as sinh(y) = x and then use the definition of sinh to give us:0.5(e^(y) - e^(-y)) = xore^(y) - e^(-y) = 2xThis equation is in a form which is common in questions about hyperbolic functions. It is almost always useful to get rid of any e^(-y) terms by multiplying the whole equation by e^y. This would give us:e^(y)e^(y) - e^(-y)e^(y) = 2xe^(y)Remembering the rules of indices ((a^b)(a^c) = a^(b+c)) and moving the x term to the left hand side of the equation we get:e^(y+y) - 2xe^(y) - e^(-y+y) = 0Which simplifies to e^(2y) - 2xe^(y) -1 = 0As is typical with these questions we end up with a quadratic in e^y. Using the quadratic formula we now get:e^y = (-b +/- sqrt( b^2 - 4ac) / (2a) = (2x +/- sqrt( (-2x)^2 - 4(1)(-2))) / (21)= (2x +/- sqrt( 4x^2 +4)) / 2= (2x +/- sqrt(4(x^2 + 1))) /2= (2x +/- sqrt(4)sqrt(x^2 + 1)) /2= (2x +/- 2sqrt(x^2 + 1)) /2= x +/- sqrt(x^2 + 1)Now we can take the natural log on both sides of the above equation to get:y = ln (x +/- sqrt(x^2 + 1))The final step is remembering that you can't take the natural log of a negative number, and since it is possible forx - sqrt(x^2 + 1) to be negative for some values of x, the sign inside the log must be +, and not - (as arcsinh should accept all possible values of x). This means that we finally have the answer:y = ln (x + sqrt(x^2 + 1))

SB
Answered by Sam B. Further Mathematics tutor

5024 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the 4th roots 6


How do I find the vector/cross product of two three-dimensional vectors?


Given that y = cosh^-1 (x) , Show that y = ln(x+ sqrt(x^2-1))


Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences