Factorise fully 6xyz + 24x^2yz + 18xy^3z^2

So we need to find common factors for each term: 6xyz, 24x2yz and 18xy3z2. Let's start with the numbers. Do the numbers 6, 24 and 18 have a common factor? Yes, 6 . If we take 6 out of the term we get: 6(xyz + 4x2yz + 3xy3z2). Now we need to factorise out the letters. Each term has a common factor of xyz, but nothing more. For example, as 4x2yz has an x2 in it but xyz does not, so we cannot take out x2. This gives us then: 6xyz(1 + 4x + 3y2z) which is fully factorised. To check your answer you can try multiplying back out the bracket and seeing if you end back with 6xyz + 24x2yz + 18xy3z2.

Answered by Tom L. Maths tutor

2777 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How can you find the integral of x^-1


How do you solve two simultaneous equations? (i.e. 5x + y =21 and x - 3y =9)


If a student wishes to have a ratio of 2:7 red pens to yellow pens in their pencil case: a) if they have 50 pens total what is the maximum amount they can carry with them b) if they have 18 red and 31 yellow what is the maximum amount they can carry


2 5/3 + 2 8/9


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences