Differentiate sin(x)cos(x) with respect to x?

You will have to use the Product Rule. The Product rule: when y=f(x)g(x), then dy/dx=f'(x)g(x)+f(x)g'(x). In this example, f(x)=sin(x) and g(x)=cos(x). Hence f'(x)=cos(x) and g'(x)=-sin(x). Using these and subbing into the Product rule, dy/dx=cos2(x)-sin2(x).

Answered by Matthew M. Maths tutor

4319 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using a suitable substitution, or otherwise, find the integral of [x/((7+2*(x^2))^2)].


ABCDEF


The curve C has the equation: 16y^3 +9x^2y-54x=0, find the x coordinates of the points on C where dy/dx = 0


Compare the following logarithms in base 1/2 without a calculator: log(8) and log(512)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences