Integrate x/((1-x^2)^0.5) with respect to x

x = sin(u), dx/du = cos(u), dx = cos(u) * du,[x/(1-x^2)^0.5)] * dx = [sin(u)/((1-(sin(u)^2))^0.5] * cos(u) * du = [sin(u)/(cos(u)^2)^0.5] * cos(u) * du = sin(u) * duIntegral of sin(u) * du = -cos(u) = -(1-sin(u)^2)^0.5 = -(1-x^2)^0.5

AP
Answered by Andrew P. Maths tutor

4684 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation " 2sec^2(x) = 5tanx " for 0 < x < π


What is 'e' and where does it come from?


Prove that cos(4x) = 8(cos^4(x))-8(cos^2(x)) + 1


In the triangle ABC, AB = 16 cm, AC = 13 cm, angle ABC = 50 and angle BCA= x Find the two possible values for x, giving your answers to one decimal place.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning