Integrate x/((1-x^2)^0.5) with respect to x

x = sin(u), dx/du = cos(u), dx = cos(u) * du,[x/(1-x^2)^0.5)] * dx = [sin(u)/((1-(sin(u)^2))^0.5] * cos(u) * du = [sin(u)/(cos(u)^2)^0.5] * cos(u) * du = sin(u) * duIntegral of sin(u) * du = -cos(u) = -(1-sin(u)^2)^0.5 = -(1-x^2)^0.5

AP
Answered by Andrew P. Maths tutor

4682 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I remember the trigonometry identities from C3 in the exam?


Express 4 sin(x) – 8 cos(x) in the form R sin(x-a), where R and a are constants, R >0 and 0< a< π/2


Given a second order Differential Equation, how does one derive the Characteristic equation where one can evaluate and find the constants


If f(x)=(4x^2)-(8x)+3, find the gradient of y=f(x) at the point (0.5,0)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning