What is the normal distribution and how do I use it?

The normal distribution is a distribution we can use when we know the mean and the standard deviation of a population, to work out probabilities that a certain even will occur.
The main properties of a normal distribution is that it has a bell shaped curve, with the mean of the population corresponding to the x value of the curve's peak. It also has a fixed variance.
A common example of its use would be the following question:A factory is producing bags of sugar, weighed in grams. The factory wishes to know the probability that a bag of sugar weighs more than 750g. The mean of the weights is 600g, the standard deviation in 50g. Work out the probability.
A key formula for the normal distribution is the normalisation formula,
Z= (value - mean)/ standard deviation
for this example Z= (750-600)/50 = 3
When we look at the table of Z scores to probabilities we see that this relates to the probability: 0.99865
but this value only corresponds to the probability that the bag of sugar is less than 750, so we calculate
1-0.99865 = 0.00135

Answered by Chantelle C. Maths tutor

3068 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle is moving in the with acceleration (2t - 3) ms^-2 and initial velocity 2ms^-1. Find the distance travelled when the velocity has reached 12ms^-1.


Express 3/2x+3 – 1/2x-3 + 6/4x^2-9 as a single fraction in its simplest form.


The curve C has equation 4x^2 – y^3 – 4xy + 2^y = 0 The point P with coordinates (–2, 4) lies on C . Find the exact value of dy/dx at the point P .


How do I integrate ln(x), using integration by parts?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences